
PHYSICAL REVIEW E, VOLUME 65, 056616
Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings

P. B. Wilkinson
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

~Received 18 December 2001; published 20 May 2002!

The formation of photonic Bloch oscillations and Wannier-Stark ladders is demonstrated in an exponentially
chirped one-dimensional Bragg grating. The photonic Bloch oscillations are investigated using Hamiltonian
optics, and direct analogies are made with electron dynamics in periodic potentials. The results of transfer
matrix calculations are presented, which show the existence of a photonic Wannier-Stark ladder that should be
detectable in experiments.
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Traditionally, a Bloch oscillation is regarded as the sem
classical motion of a charged particle in a periodic poten
subject to a uniform electric field. The field accelerates
particle through the energy band formed by the periodic
tential. When the particle reaches the Brillouin zone bou
ary, it is Bragg reflected. It is then decelerated by the fi
until it comes to rest, completing one period of the oscil
tion. Although this phenomenon was predicted by Bloch
1928@1#, it has only recently been observed directly in hig
quality semiconductor superlattices@2,3#. The quantization
of this semiclassical motion leads to equally spaced
quences of energy levels known as Wannier-Stark ladd
@4#, which have also been directly detected@5,6#.

Recently, several optical systems have been proposed
studied which exhibit photonic Bloch oscillations an
Wannier-Stark ladders. In these systems, the photonic la
and its frequency bands change with position. This cau
the Bloch wave vector of the light to change as it propaga
through the photonic structure, mimicking the effects of e
ternal fields on a charged particle in a periodic potential. T
first experimental observation of a photonic Wannier-St
ladder used a linearly chirped Moire´ grating written in the
core of an optical fiber@7,8#. The grating had two slightly
different periodicities, both of which were linearly chirpe
The beating of the two periods formed a linearly ramp
photonic band with a periodically modulated bandwidth. T
linear ramp produced one of the turning points of the Blo
oscillation whilst the periodic modulation produced the s
ond. Other studies have proposed using a linear variatio
refractive index superimposed on an unchirped Bragg gra
comprising high and low index layers@9–11#. Optical Bloch
oscillations have been observed in experiments on t
dimensional waveguide arrays using this index pro
@12,13#. Finally, unchirped Bragg gratings with a slow
varying lateral confinement have also been shown to prod
photonic Bloch oscillations@14# and a Wannier-Stark ladde
@15#.

In this paper, a simple geometry is proposed which p
duces photonic Bloch oscillations and exhibits an equa
spaced Wannier-Stark ladder. The system is a Bragg gra
which is chirpedexponentially, as opposed to the more com
mon linearly chirped grating. Physical insight into the natu
of the photonic Bloch oscillations is provided by a Ham
tonian optics analysis, which is directly analogous to
semiclassical description of electronic Bloch oscillations i
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periodic potential. The results of transfer matrix calculatio
are presented, which demonstrate the existence of the ph
nic Wannier-Stark ladder and suggest that a subset of
Wannier-Stark resonances could be probed by simple op
transmission experiments.

Figure 1 shows the unit cells, lattices, and local ba
structures of a simple semiconductor superlattice and the
ponentially chirped Bragg grating considered in this pap
The semiconductor superlattice shown in Fig. 1~b! is formed
from the unit cell shown by solid lines in Fig. 1~a!. The
overall width of the unit cell isl and the width of the poten
tial barrier isd. The superlattice is subject to a uniform ele
tric field F}2dU/dx whereU(x) is the corresponding lin-

FIG. 1. ~a! Potential energy profileV(x) of the unit cell of a
uniform semiconductor superlattice.~b! Potential energy profile of
the semiconductor superlattice in the presence of a uniform ele
field. ~c! Reduced zone representation of the local energy b
structuree loc of the superlattice in a uniform electric field.~d! Re-
fractive index profilen(x) of the unit cell of the uniform Bragg
grating. ~e! Refractive index profile of an exponentially chirpe
Bragg grating.~f! Reduced zone representation of the local f
quency band structurev loc of the chirped grating. Any unspecifie
units and scales are arbitrary.
©2002 The American Physical Society16-1



ro

is

e
tia
re
an

o-
le

h

n

ng
e

th
at
sid

.
ith
y

an
a

s
ite
p
e

th

rm

d

he
be
ich
and
xed
est
he
och
the
ith

a-

ri-
rgu-
nge

ing

re

he
ngs

an

n

os-

e
h

a
ra

P. B. WILKINSON PHYSICAL REVIEW E 65 056616
ear potential energy. Providing that the potential energy d
across the unit cell is small, a local energy band structuree loc
is formed for semiclassical motion in the lattice. This
shown in a reduced zone representation in Fig. 1~c! as a
function of f5kl, wherek is the Bloch wave number. At a
given position x, e loc(f)5E(f)1U(x)2U(x0), where
E(f) is the local band structure atx5x0 . As an electron
moves through this superlattice, the local band structur
translated up and down in energy by the change in poten
The turning points of Bloch oscillations in the lattice a
caused by Bragg reflection and they occur when the b
edges coincide with the total energy of the electron, which
constant.

Figure 1~e! shows the refractive index profile of an exp
nentially chirped Bragg grating, in which each cell resemb
the unit cell shown by solid lines in Fig. 1~d!. Whilst l is now
a function ofx, the ratiod/ l is kept constant. Ifl (x) varies
slowly, a local frequency band structurev loc forms as shown
in Fig. 1~f!. Since Maxwell’s equations scale linearly wit
frequency,v loc(f)5V(f) l 0 / l (x), whereV~f! and l 0 are
the band structure and unit cell size, respectively, atx5x0 .
As the light propagates through the grating, the photo
band structure is scaled~as opposed to translated! up and
down in frequency by the changing cell size. The turni
points of the Bloch oscillation occur when the band edg
equal the frequency of the light, which is a constant of
motion like the total energy of the electron in the superl
tice. In this paper, exponentially chirped gratings are con
ered with

l ~x!5 l 0 exp@h~x2x0!#, ~1!

whereh is a small constant that determines the chirp rate
will be shown that this profile causes Bloch oscillations w
constant amplitudes and periods, and consequentl
Wannier-Stark ladder with constant frequency spacings.

The dependence of the electronic and photonic b
structures on position in the two systems is shown schem
cally in Fig. 2. Figure 2~a! shows the energy band edges a
function of x in the semiconductor superlattice. The wh
and gray regions indicate the bands and band gaps, res
tively, whilst the solid lines with arrowheads indicate th
extent of Bloch oscillations at specific energies. Since

FIG. 2. ~a! Energy bands~white! and band gaps~gray! of the
superlattice shown in Fig. 1~b! as a function of position.~b! Fre-
quency bands~white! and band gaps~gray! of the exponentially
chirped Bragg grating shown in Fig. 1~e!. In both cases the solid
lines with arrowheads indicate the extent of Bloch oscillations
particular energies or frequencies. All units and scales are arbit
05661
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bands are all inclined at the same gradient by the unifo
electric field, the periods~tB5h/eFl, wheree is the elec-
tronic charge! and amplitudes~LB5D/eF, whereD is the
bandwidth! of all the Bloch oscillations in a particular ban
are independent of the energy of the electron.

Similarly, Fig. 2~b! shows the frequency band edges of t
exponentially chirped Bragg grating. In this case, as will
shown below, it is the exponential scaling of the bands wh
ensures that the Bloch oscillations have constant periods
frequencies. Note that the lowest photonic band edge is fi
at v loc50 because the bands are scaled, unlike the low
electronic band edge, which is shifted up or down by t
applied field. This means that there can be no photonic Bl
oscillations in the lowest band of the grating because
frequency of the lowest band edge can never coincide w
the frequency of the light. However, photonic Bloch oscill
tions do occur in all the other bands.

The existence of electronic Bloch oscillations in a pe
odic potential can be demonstrated by a semiclassical a
ment relating the force on the electron to the rate of cha
of the Bloch wave vector@4#. For the exponentially chirped
Bragg grating, an analogous result can be derived us
Hamiltonian optics. In this formalism@16#, the paths of geo-
metrical rays in slowly varying photonic band materials a
determined from Hamilton’s equations

dx

ds
5

]H
]k

~2!

and

dk

ds
52

]H
]x

, ~3!

where x5$x,y,z,2ct%, k5$kx ,ky ,kz ,v/c%, H is the
Hamiltonian, ands is some measure of distance along t
ray path. In this paper, it is assumed that the Bragg grati
are infinite and unchanging alongy andz. The resulting one-
dimensional~1D! Hamiltonian is derived directly from the
local dispersion relation. For a ray path corresponding to
electromagnetic wave with angular frequencyv, the Hamil-
tonian is

H~x,k,v!5v loc~f!2v5V~f!
l 0

l ~x!
2v, ~4!

where f5kl(x), k5kx and the scaled dispersion relatio
V(f)5v loc(f) l (x)/ l 0 is independent ofx. For any given
ray path, Hamilton’s equations ensure thatx andk vary ac-
cording to the conditionH50, implying v loc(f)5v at all
times. To calculate the amplitudes and periods of Bloch
cillations in an exponentially chirped lattice, Eqs.~2! and~3!
must be integrated with respect tot. The initial step is to
substitute Eq.~4! into Eq. ~2!, which shows thatd/dt
5d/ds in this case. It is worth noting at this point that th
scaled wave numberf is also the phase within the Bloc
oscillation cycle~this will be illustrated later in Fig. 3!. The
rate of change of the phase is

t
ry.
6-2
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df

dt
5k

dl

dx

dx

dt
1 l ~x!

dk

dt
. ~5!

Equations~2! and ~3! give

dx

dt
5

l 0

l ~x!

]V

]k
5

l 0

l ~x!

dV

df

]f

]k
5 l 0

dV

df
, ~6!

and

dk

dt
52S l 0

l ~x!

]V

]x
1 l 0V~f!

d

dx F 1

l ~x!G D
52S l 0

l ~x!

dV

df

]f

]x
2

l 0

l 2~x!
V~f!

dl

dxD
5V~f!

l 0

l 2~x!

dl

dx
2k

dl

dx

l 0

l ~x!

dV

df
, ~7!

respectively. Substituting Eqs.~6! and ~7! into Eq. ~5! gives

df

dt
5V~f!

l 0

l

dl

dx
. ~8!

The rate of change of phase determines the amplitudesLB
and periodstB of the photonic Bloch oscillations. Ifdf/dt is
a function off and constant termsonly, thenLB andtB for
Bloch oscillations in a given band are independent ofx, and
consequently independent ofv. This condition is satisfied

FIG. 3. Bloch oscillations in an exponentially chirped Bra
grating calculated for light rays with angular frequenciesv52.7
31015 rad s21 ~solid!, v52.631015 rad s21 ~dashed!, andv52.5
31015 rad s21 ~dotted!. The numbered plots below show the loc
dispersion relationv loc(f) at positions and times~x,t! indicated by
the corresponding numbered arrows. In these plots, the dotted
indicate the constant angular frequency of the lightv and the
crosses show the phase of the Bloch oscillationf at each coordinate
~x,t!. The scales of the plots are the same as Fig. 1~f!.
05661
provided thatdl/dx} l , which is clearly the case whenl (x)
is given by Eq.~1!. For this exponential chirp profile, the rat
of change of phase reduces to

df

dt
5h l 0V~f!. ~9!

The amplitude is found by integratingdx/df between the
left- and right-hand limits of the Bloch oscillation~f52p
andf50, respectively!. This gives

LB5E
2p

0 dx

dt S df

dt D
21

df

5
1

h E
2p

0 1

V~f!

dV

df
df

5
1

h
lnS 11

D0

V0
D , ~10!

whereV05V(2p) is the lower edge of the band atx5x0
and D05V(0)2V0 is the corresponding bandwidth. Sim
larly, the period of the Bloch oscillation is found by integra
ing dt/df over one cycle (f50→2p), giving

tB5E
0

2pS df

dt D
21

df5
1

h l 0
E

0

2p 1

V~f!
df. ~11!

For any given band, Eqs.~10! and ~11! demonstrate thatLB
andtB are independent ofv. AlthoughLB is simply a func-
tion of the band edge frequencies atx0 , tB depends on the
form of V~f! throughout the band and must usually be c
culated numerically. However, when the ration1 /n0 is large,
the dispersion relation can be approximated toV(f)'V0
1D0(11cosf)/2 @8#. In this approximation tB
'2p/h l 0V0(11D0 /V0)1/2.

It is important to note thatLB andtB will be constant for
any generalV~f! that has nonzero upper and lower ba
edges and varies monotonically between them. Any 1D
riodic structure that exhibits such a photonic band could h
a slow exponential chirp applied to it. It would then suppo
photonic Bloch oscillations with constant periods and amp
tudes. The analogies between these Bloch oscillations
their electronic counterparts are very strong. They occu
1D as a function of time, with amplitudes and periods th
are independent of frequency within the same band. By c
trast, in some previous studies, the Bloch oscillations
only occur in 2D. This is because one of the turning points
caused either by a total internal reflection@9–13#, or by vary-
ing the width of the sample in the second direction@14,15#.
Also, in one of the systems@11#, the periods and amplitude
of the Bloch oscillations depend on frequency.

The chirped grating considered in this paper consists
the simple Kro¨nig-Penney model unit cells shown in Fig
1~d!. Three Bloch oscillations in the same photonic band
this grating are shown in Fig. 3. They were generated
numerically integrating Eqs.~2! and~3! using a fourth-order
Runge-Kutta method. Sincel is assumed to vary slowly with
x, the scaled dispersion relationV~f! in the chirped grating

es
6-3
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P. B. WILKINSON PHYSICAL REVIEW E 65 056616
is approximately the same as that of an unchirped gra
with constant cell sizel 0 . Using this approximation,V~f!
was found by solving the transcendental equation

cos~f!5cosS Vn1

c
d0D cosS Vn0

c
~ l 02d0! D

2
11r 2

2r
sinS Vn1

c
d0D sinS Vn0

c
~ l 02d0! D ,

~12!

where r 5n1 /n0 @17#. The parameters werex050, l 0
50.3mm, d050.1mm, h53.3333104 m21, n051.0, and
n153.5. The low index layers are air, and the high ind
layers are GaAs. For the Bloch oscillations to occur, the lo
tolerance on the width of each layer would have to be
order of magnitude less than the difference in size betw
neighboring cells. Similar photonic lattices with features
these scales have been made in 1D by electron-beam lit
raphy and etching of an epitaxially grown AlxGa12xAs wafer
@18#. Photonic Bloch oscillations were investigated in t
first excited band, for whichV052.24831015 rad s21 and
D050.75531015 rad s21. The angular frequency range use
in Fig. 3 was 2.531015 rad s21<v<2.731015 rad s21. The
numerically calculated periods and amplitudes of all th
Bloch oscillations aretB50.2426 ps andLB58.688mm, re-
spectively. As predicted, they are independent ofv and agree
exactly with the results of Eqs.~10! and ~11!.

The numbered plots at the base of Fig. 3 demonstrate
f is the phase of the Bloch oscillation. They show the lo
dispersion relationsv loc(f) at positionsx and timest indi-
cated by the corresponding numbered arrows. The do
lines mark the optical frequencyv, which is a constant of the
motion, and the crosses indicatef. The ray path starts atf
52p ~plot 1! and moves in the positivex direction~plot 2!
since the group velocity given by Eq.~6! is positive. Atf
50 ~plot 3! the ray has moved far enough towards positivx
that the upper edge of the band is equal tov causing the ray
to be Bragg reflected. The ray now has a negative gr
velocity, and it moves back towards negativex ~plot 4! until
it reachesf5p ~plot 5!. At this point, it Bragg reflects from
the lower edge of the band, completing the cycle.

The Hamiltonian approach gives good physical insig
into the origin and nature of the photonic Bloch oscillatio
in this geometry, but it can only be validated by a compa
son with the solution of Maxwell’s equations. Since t
Bragg gratings are assumed to be infinite in extent alony
andz, electromagnetic waves moving in 1D alongx obey a
scalar wave equation

¹2c1
v2n2

c2 v50, ~13!

wherec is either the electric or magnetic field vector perpe
dicular to the interfaces. To produce the exponential ch
specified by Eq.~1!, the length of thej th cell, L j , is deter-
mined by solving*xj

xj 11 exp„2h(x2x0)…dx5 l 0 for xj 11 ,

wherexj is the known left-hand edge of the cell,xj 11 is the
05661
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right-hand edge, andL j5xj 112xj . If the left-hand edge of
cell 0 is atx0 then it is straightforward to show that

xj5x02
ln~12 jhl 0!

h
~14!

and

L j52
1

h
lnS 12

h l 0

12 jhl 0
D . ~15!

By applying the approximation

ln~12s!'
ln~11s!

ln~11s!21
, ~16!

which is exact up to and including the third power ofs, to
Eq. ~15! it is possible to derive the simple recursive relati

L j'
L j 21

12hL j 21
. ~17!

Equation~17! is extremely accurate for the slowly chirpe
gratings that are considered in this paper. In a recent pa
@15#, a 1D photonic lattice was proposed that genera
Bloch oscillations and a Wannier-Stark ladder using t
same relation. Each cell of the lattice was formed from
high index well region with a Bragg mirror on each end. T
fields in these cells were localized strongly in the well r
gions, and coupled only weakly to adjacent cells by the e
nescent fields in the Bragg mirrors. This allowed the auth
of @15# to derive a relation equivalent to Eq.~17! from a tight
binding argument. But the Hamiltonian optics analysis p
sented here is more general. It predicts thatany exponen-
tially chirped lattice will exhibit photonic Bloch oscillation
and Wannier-Stark ladders, including much simpler lattic
than were used in@15#.

To demonstrate the formation of a photonic Wannier-St
ladder, Eq.~13! was solved for a 1D chirped Bragg gratin
with cell sizes related by Eq.~17! and parameters identical t
those used for Fig. 3. The length of the grating was 17.9mm
and it was centered onx5x0 . The ends were assumed to b
perfectly reflecting so that the confined eigenmodes of
grating could be calculated. A transfer matrix meth
was used to determine the angular frequencies of all
eigenmodes in the range 2.431015 rad s21<v<2.8
31015 rad s21. These are shown on the left-hand side of F
4. At these frequencies, the electromagnetic fields are c
centrated near the center of the grating and are very s
near the ends. Therefore the eigenmodes can be ident
with a Wannier-Stark ladder, even though this is strictly d
fined as the set of eigenmodes of an infinite lattice.

In semiconductor superlattices, the Wannier-Stark lad
originates from the quantization of the Bloch oscillation
The constant energy spacing of the states is related to
constant period of the Bloch oscillations by the Corresp
dence Principle,DE5h/tB5eFl. Similarly, in the chirped
Bragg grating, the eigenmodes that have negligibly sm
amplitudes at the ends of the grating form a photo
Wannier-Stark ladder with a constant angular frequen
6-4
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spacing of Dv52p/tB . In Fig. 4, Dv52.590
31013 rad s21 which agrees exactly with 2p/tB52.590
31013 rad s21 (tB50.2426 ps). On the right of Fig. 4 th
field intensity profiles of five of the modes are shown a
function of position. The solid bar above each plot shows
position and extent (LB58.688mm) of the corresponding
Bloch oscillation obtained from Hamiltonian optics. Th
agreement between the positions of the modes and the B
oscillations is extremely good, and it demonstrates the va
ity of the Hamiltonian optics analysis of this system. T
modes are slightly longer than the Bloch oscillations as t
have an evanescent tail at each end, which penetrates int
region within the band gap, which is forbidden to the ge
metrical ray path.

The evanescent sections of the eigenmodes should pe
the experimental observation of the Wannier-Stark lad
over a small frequency range@19#. Figure 5 shows the trans
mission coefficientT of a chirped Bragg grating, centered o
x0 , which is identical to that used in Fig. 4 except that
does not have reflective ends and it has been shortene
11.6mm. This length is slightly larger thanLB and was cho-
sen such that the evanescent tails of the Wannier-Stark la
modes localized near the center of the grating would
reach the ends. Transmission through this grating is poss

FIG. 4. Angular frequencies~left! of eigenmodes of an exponen
tially chirped Bragg grating with reflective ends. The eigenmod
are separated byDv52p/tB . The intensities of the fields in five o
the modes are shown plotted~in arbitrary units! as a function of
position x on the right. The solid bars above the intensity plo
indicate the position and extent of the Bloch oscillations predic
by Hamiltonian optics.
v.
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because the tails couple light from incident and transmit
plane waves at either end into and out of the Wannier-S
ladder modes. The transfer matrix method was used to
culateT(v) for the light incident on one of the ends. Fiv
clear peaks are visible in Fig. 5, with a near-constant se
ration ofDv'2.6131013 rad s21. These peaks can be iden
tified with resonant transmission through the modes of
Wannier-Stark ladder. The modes are only slightly perturb
by the finite length of the grating, which explains the sm
deviation ofDv from the predicted value of 2p/tB52.590
31013 rad s21.

In conclusion, a simple geometry for producing photon
Bloch oscillations and Wannier-Stark ladders has been p
posed: a slow exponential scaling of unit cell size with p
sition in a general1D photonic lattice. Simple expression
for the periods and amplitudes of the Bloch oscillations w
derived using a Hamiltonian optics analysis. These photo
Bloch oscillations are directly analogous to their electro
counterparts since, within the same band, they all have
same period and amplitude independent of the frequenc
the light. A photonic Wannier-Stark ladder with constant fr
quency spacings was also shown to exist in this system.
spatial extent and frequency spacing of the modes of
Wannier-Stark ladder agreed very closely with those p
dicted by quantizing the corresponding Bloch oscillation
With an appropriately designed grating, the Wannier-St
modes should be experimentally detectable in transmis
measurements over a narrow range of frequencies.

I would like to thank Dr. T. M. Fromhold for useful dis
cussions. This work was funded by EPSRC U.K.
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FIG. 5. Transmission coefficientT(v) showing transmission
peaks separated byDv'2p/tB .
ev.

ett.
@1# F. Bloch, Z. Phys.52, 555 ~1928!.
@2# J. Feldmannet al., Phys. Rev. B46, R7252~1992!.
@3# C. Waschkeet al., Phys. Rev. Lett.70, 3319~1993!.
@4# G. H. Wannier,Elements of Solid State Theory~Cambridge

University Press, London, 1959!.
@5# E. E. Mendez, F. Agullo´-Rueda, and J. M. Hong, Phys. Re

Lett. 60, 2426~1988!.
@6# M. M. Dignam and J. E. Sipe, Phys. Rev. Lett.64, 1797

~1990!.
@7# C. Martijn de Sterkeet al., Phys. Rev. E57, 2365~1998!.
@8# I. Talanina and C. Martijn de Sterke, Phys. Rev. A63, 053802

~2001!.
@9# G. Monsivais, M. del Castillo-Mussot, and F. Claro, Phys. R

Lett. 64, 1433~1990!.
@10# U. Peschel, T. Pertsch, and F. Lederer, Opt. Lett.23, 1701

~1998!.
@11# G. Lenz, I. Talanina, and C. Martijn de Sterke, Phys. Rev. L

83, 963 ~1999!.
6-5



il-
ld
2D

P. B. WILKINSON PHYSICAL REVIEW E 65 056616
@12# T. Pertschet al., Phys. Rev. Lett.83, 4752~1999!.
@13# R. Morandottiet al., Phys. Rev. Lett.83, 4756~1999!.
@14# A. Kavokin et al., Phys. Rev. B61, 4413~2000!.
@15# G. Malpuechet al., Phys. Rev. B63, 035108~2001!.
@16# P. St. J. Russell and T. A. Birks, J. Lightwave Technol.17,

1982 ~1999!.
@17# T. J. Shepherd, P. J. Roberts, and R. Loudon, Phys. Rev. E55,
05661
6024 ~1997!.
@18# T. F. Krausset al., IEEE Photonics Technol. Lett.9, 176

~1997!.
@19# Whilst experimental observation of the photonic Bloch osc

lations in a 1D system would be extremely difficult, it shou
be possible to observe them using an appropriately chirped
waveguide array as in@12,13#.
6-6


