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Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings
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The formation of photonic Bloch oscillations and Wannier-Stark ladders is demonstrated in an exponentially
chirped one-dimensional Bragg grating. The photonic Bloch oscillations are investigated using Hamiltonian
optics, and direct analogies are made with electron dynamics in periodic potentials. The results of transfer
matrix calculations are presented, which show the existence of a photonic Wannier-Stark ladder that should be
detectable in experiments.
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Traditionally, a Bloch oscillation is regarded as the semi-periodic potential. The results of transfer matrix calculations
classical motion of a charged particle in a periodic potentiakre presented, which demonstrate the existence of the photo-
subject to a uniform electric field. The field accelerates thenic Wannier-Stark ladder and suggest that a subset of the
particle through the energy band formed by the periodic poWannier-Stark resonances could be probed by simple optical
tential. When the particle reaches the Brillouin zone bound{ransmission experiments.
ary, it is Bragg reflected. It is then decelerated by the field Figure 1 shows the unit cells, lattices, and local band
until it comes to rest, completing one period of the oscilla-Structures of a simple semiconductor superlattice and the ex-
tion. Although this phenomenon was predicted by Bloch inPonentially chirped Bragg grating considered in this paper.
1928[1], it has only recently been observed directly in high- The semiconductor superlattice shown in Figh)is formed
quality semiconductor superlatticé®,3]. The quantization from the unit cell shown by solid lines in Fig.(@. The
of this semiclassical motion leads to equally spaced seoverall width of the unit cell id and the width of the poten-
quences of energy levels known as Wannier-Stark ladderd@l barrier isd. The superlattice is subject to a uniform elec-

[4], which have also been directly detec{&g6]. tric field Foc —dU/dx whereU(x) is the corresponding lin-
Recently, several optical systems have been proposed and

studied which exhibit photonic Bloch oscillations and (a) v(x) (d) n(x) I

Wannier-Stark ladders. In these systems, the photonic lattict &% ml e o

and its frequency bands change with position. This cause: m o | o

the Bloch wave vector of the light to change as it propagates ‘ | i ng -------------

through the photonic structure, mimicking the effects of ex- ©
ternal fields on a charged particle in a periodic potential. The,
first experimental observation of a photonic Wannier-Stark
ladder used a linearly chirped Moigrating written in the
core of an optical fibef7,8]. The grating had two slightly
different periodicities, both of which were linearly chirped.
The beating of the two periods formed a linearly ramped

photonic band with a periodically modulated bandwidth. The (c) - ® '

linear ramp produced one of the turning points of the Bloch \/
oscillation whilst the periodic modulation produced the sec-

ond. Other studies have proposed using a linear variation o

refractive index superimposed on an unchirped Bragg gratinc® /\
comprising high and low index layef9—11]. Optical Bloch /\
oscillations have been observed in experiments on two-

dimensional waveguide arrays using this index profile 0 ] o \/
[12,13. Finally, unchirped Bragg gratings with a slowly -= 0 b - 0 b
varying lateral confinement have also been shown to producc ¢=H ¢ = ki(x)

photonic Bloch oscillation$14] and a Wannier-Stark ladder FIG. 1. () Potential energy profil&/(x) of the unit cell of a

[15]. . . . . uniform semiconductor superlatticéh) Potential energy profile of

In this paper, a simple geometry is proposed which proy,e semiconductor superlattice in the presence of a uniform electric
duces photonic Bloch oscillations and exhibits an equalljie|q. (c) Reduced zone representation of the local energy band
spaced Wannier-Stark ladder. The system is a Bragg gratingrycturee,,, of the superlattice in a uniform electric fieltd) Re-
which is chirpedexponentiallyas opposed to the more com- fractive index profilen(x) of the unit cell of the uniform Bragg
mon linearly chirped grating. Physical insight into the naturegrating. (e) Refractive index profile of an exponentially chirped
of the photonic Bloch oscillations is provided by a Hamil- Bragg grating.(f) Reduced zone representation of the local fre-
tonian optics analysis, which is directly analogous to thequency band structure . of the chirped grating. Any unspecified
semiclassical description of electronic Bloch oscillations in aunits and scales are arbitrary.
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bands are all inclined at the same gradient by the uniform
electric field, the period¢rg=h/eFIl, wheree is the elec-
tronic charge and amplitudegLg=A/eF, whereA is the
bandwidth of all the Bloch oscillations in a particular band
are independent of the energy of the electron.

Similarly, Fig. 2b) shows the frequency band edges of the
exponentially chirped Bragg grating. In this case, as will be
. . ) shown below, it is the exponential scaling of the bands which
x x ensures that the Bloch oscillations have constant periods and
frequencies. Note that the lowest photonic band edge is fixed
at w,.=0 because the bands are scaled, unlike the lowest
quency bandswhie) and band gapsgray of the exponentally - 22 S A T S RO PR B T LA
chirped Bragg grating shown in Fig(€). In both cases the solid S : -
lines with arrowheads indicate the extent of Bloch oscillations atoscﬂlatlons in the lowest band of the grating bepa_use the
particular energies or frequencies. All units and scales are arbitrar{Lequency of the IOWPfSt band edge can never CO'nC'de.W'th

e frequency of the light. However, photonic Bloch oscilla-

ear potential energy. Providing that the potential energy drofjons do occur in all the other bands.

across the unit cell is small, a local energy band structjyte _The existence of electronic Bloch oscillatio_ns in.a per-
is formed for semiclassical motion in the lattice. This is °diC Potential can be demonstrated by a semiclassical argu-

shown in a reduced zone representation in Fig) Bs a ment relating the force on the electron to the rate of_change
function of ¢=kl, wherek is the Bloch wave number. At a of the Bloc_h wave vectof4]. For the exponentially _chlrped_
given position X, eo(d)=E($)+U(x)—U(xo), where Bragg grating, an analogous result can be derived using
E(¢) is the local band structure at=x,. As an electron Hamiltonian optics. In this formalisifil6], the paths of geo-

moves through this superlattice, the local band structure igetricql rays in slowly varying phqtonic band materials are
translated up and down in energy by the change in potentia _etermlned from Hamilton's equations
The turning points of Bloch oscillations in the lattice are

Energy
Frequency

FIG. 2. (a) Energy bandgwhite) and band gapsgray) of the
superlattice shown in Fig.(fh) as a function of position(b) Fre-

caused by Bragg reflection and they occur when the band %: ﬁ )
edges coincide with the total energy of the electron, which is do ok
constant.
Figure Xe) shows the refractive index profile of an expo- and
nentially chirped Bragg grating, in which each cell resembles
the unit cell shown by solid lines in Fig(d). Whilst| is now dk IH
a function ofx, the ratiod/l is kept constant. If(x) varies do oax’ ©)

slowly, a local frequency band structuig,, forms as shown

in Fig. 1(f). Since Maxwell's equations scale linearly with oo x={xy,z,—ct}, k={ke.ky .k, 0/c}, H is the
frequency, wioc(¢) = Q(H)lo/1(x), where€l(¢) andlo are  pamiltonian, ands is some measure of distance along the
the band_ structure and unit cell size, respt_actlvely(ako. “ray path. In this paper, it is assumed that the Bragg gratings
As the light propagates through the grating, the photonic e infinite and unchanging aloygandz The resulting one-
band structure is scaleths opposed to translatedp and  gimensional(1D) Hamiltonian is derived directly from the
down in frequency by the changing cell size. The tumingiqcq| dispersion relation. For a ray path corresponding to an

points of the Bloch oscillation occur when the band edge%lectromagnetic wave with angular frequenaythe Hamil-
equal the frequency of the light, which is a constant of thegnian is

motion like the total energy of the electron in the superlat-
tice. In this paper, exponentially chirped gratings are consid- lo
ered with H(X,K,0)= 0 @) — 0=0(p) TR 4

1(x)=loexd 7(X—Xo)], (N _ _ _
where ¢=klI(x), k=k, and the scaled dispersion relation
where 7 is a small constant that determines the chirp rate. 12 (¢) = w,o( ) (X)/14 is independent ok. For any given
will be shown that this profile causes Bloch oscillations withray path, Hamilton's equations ensure tlxeandk vary ac-
constant amplitudes and periods, and consequently eording to the conditiorf{=0, implying w,,(#)=w at all
Wannier-Stark ladder with constant frequency spacings. times. To calculate the amplitudes and periods of Bloch os-
The dependence of the electronic and photonic bandillations in an exponentially chirped lattice, E48) and(3)
structures on position in the two systems is shown schematimust be integrated with respect toThe initial step is to
cally in Fig. 2. Figure 2a) shows the energy band edges as asubstitute Eq.(4) into Eq. (2), which shows thatd/dt
function of x in the semiconductor superlattice. The white =d/do in this case. It is worth noting at this point that the
and gray regions indicate the bands and band gaps, respeszaled wave numbeg is also the phase within the Bloch
tively, whilst the solid lines with arrowheads indicate the oscillation cycle(this will be illustrated later in Fig. 3 The
extent of Bloch oscillations at specific energies. Since theate of change of the phase is
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provided thatdl/dxe|, which is clearly the case whéi(ix)
is given by Eq(1). For this exponential chirp profile, the rate
of change of phase reduces to

d
o2 (0). ©

The amplitude is found by integratindx/d¢ between the
left- and right-hand limits of the Bloch oscillatio@= — 7
and ¢ =0, respectively. This gives

[0 dx[dé¢ 7ld
LB—LE at) 9¢
1 dQ

1 ro
:ZLW» ag 99

A
1+ 2],

=—In 0,

n

(10

whereQo=Q(— ) is the lower edge of the band atx,

FIG. 3. Bloch oscillations in an exponentially chirped Bragg and Ao=(0)— ) is the corresponding bandwidth. Simi-

grating calculated for light rays with angular frequencies 2.7
X 10 rad s ! (solid), w=2.6x10'"° rads* (dashel andw=2.5

X 10" rad s'* (dotted. The numbered plots below show the local

dispersion relatiorw,( ) at positions and timeg,t) indicated by

the corresponding numbered arrows. In these plots, the dotted lines

indicate the constant angular frequency of the lightand the
crosses show the phase of the Bloch oscillaticatt each coordinate
(x,t). The scales of the plots are the same as Fif). 1

dg¢  dl dx dk
H—k&a'H(X)a. (5)
Equations(2) and(3) give
dx 1o 90 1 dQa¢  dQ
at 100 k100 dg k odg  ©
and
dk ( lo 90 d )
T WWHOQ(@d_x 19
(1o dQag g dl
“(mwwmwd—x)
I, dldl 1, dO .

respectively. Substituting Egé6) and (7) into Eq. (5) gives

do Iy dl
Jt - D T gx (8
The rate of change of phase determines the amplitlges
and periodsg of the photonic Bloch oscillations. H¢/dt is
a function of¢ and constant termanly, thenLg and rg for
Bloch oscillations in a given band are independent,aind

consequently independent af This condition is satisfied

larly, the period of the Bloch oscillation is found by integrat-
ing dt/d¢ over one cycle §=0—2), giving

TB:LZW dd))ld(ﬁ - fzwidq).

dt nloJo Qo)
For any given band, Eq$10) and(11) demonstrate thdtg
and g are independent ab. AlthoughLg is simply a func-
tion of the band edge frequenciesxat, g depends on the
form of (¢) throughout the band and must usually be cal-
culated numerically. However, when the ratip/ng is large,
the dispersion relation can be approximated(X¢s)~Q
+Ap(1+cosg)2 [8]. In this approximation 7g
~27 gl oQo(1+Ag/ Qo) Y2

It is important to note thalt g and 7g will be constant for
any generalQ)(¢) that has nonzero upper and lower band
edges and varies monotonically between them. Any 1D pe-
riodic structure that exhibits such a photonic band could have
a slow exponential chirp applied to it. It would then support
photonic Bloch oscillations with constant periods and ampli-
tudes. The analogies between these Bloch oscillations and
their electronic counterparts are very strong. They occur in
1D as a function of time, with amplitudes and periods that
are independent of frequency within the same band. By con-
trast, in some previous studies, the Bloch oscillations can
only occur in 2D. This is because one of the turning points is
caused either by a total internal reflecti®+-13], or by vary-
ing the width of the sample in the second directjdd,15.
Also, in one of the systenid1], the periods and amplitudes
of the Bloch oscillations depend on frequency.

The chirped grating considered in this paper consists of
the simple Kramig-Penney model unit cells shown in Fig.
1(d). Three Bloch oscillations in the same photonic band of
this grating are shown in Fig. 3. They were generated by
numerically integrating Eq$2) and(3) using a fourth-order
Runge-Kutta method. Sindds assumed to vary slowly with
x, the scaled dispersion relatidd(¢) in the chirped grating

11)
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is approximately the same as that of an unchirped gratingight-hand edge, antl;=Xx;,,—X;. If the left-hand edge of
with constant cell sizé,. Using this approximation{)(¢)  cell 0 is atx, then it is straightforward to show that
was found by solving the transcendental equation

B In(1—jnlo)

an, Qng Xj=Xom —— 19
coq ¢)=cog —dg|cog — (lo—dp)
¢ ¢ and
1+r2 (ind ) . (Qno(l g )) 1 |
- sin sin - ,

2r c c 00 Li=——=In| 1- 0 ) (15)

7 1-jnlo

(12)
By applying the approximation

where r=n;/ng [17]. The parameters werey,=0, |,
=0.3um, dy=0.1um, »=3.333x10* m %, ny=1.0, and In(1+s)
n;=3.5. The low index layers are air, and the high index In(1-s)~ In(1+s)—1"
layers are GaAs. For the Bloch oscillations to occur, the local
tolerance on the width of each layer would have to be arwhich is exact up to and including the third power fto
order of magnitude less than the difference in size betweeRq. (15) it is possible to derive the simple recursive relation
neighboring cells. Similar photonic lattices with features on
these scales have been made in 1D by electron-beam lithog- L~ Lj-1 (17)
raphy and etching of an epitaxially grown,&a, _,As wafer Pl
[18]. Photonic Bloch oscillations were investigated in the ) _ _
first excited band, for which),=2.248< 101 rads ! and Equ_atlon(17) is extremely acpura@e for the slowly chirped
Ay=0.755< 10" rad s 1. The angular frequency range used gratings that are cc_>nS|delred in this paper. In a recent paper
in Fig. 3 was 2.% 101 rad s '<w=2.7x 10" rad s *. The [15], a 1D photonlc lattice was proposed that ggneratgd
numerically calculated periods and amplitudes of all thred3!och oscillations and a Wannier-Stark ladder using this
Bloch oscillations are=0.2426 ps andlg=8.688m, re- same relation. Each cell of the lattice was formed from a

spectively. As predicted, they are independenb@ind agree high index well region with a Bragg mirror on each end. The
exactly with the results of Eq¢10) and (11). fields in these cells were localized strongly in the well re-
The numbered plots at the base of Fig. 3 demonstrate th&©nS, and coupled only weakly to adjacent cells by the eva-
& is the phase of the Bloch oscillation. They show the localnescent f|eld_s in the B_ragg mirrors. This allowed the_authors
dispersion relations,(¢) at positionsx and timest indi-  °f [15] to derive a relation equivalent to EQ-7) from a tight
cated by the corresponding numbered arrows. The dotte@nding argument. But the Hamiltonian optics analysis pre-
lines mark the optical frequenay, which is a constant of the S€ntéd here is more general. It predicts thay exponen-
motion, and the crosses indicate The ray path starts ab tially chirped lattice will exhibit photonic Bloch oscillations
= — 7 (plot 1) and moves in the positive direction (plot 2) and Wannier-Stark ladders, including much simpler lattices
since the group velocity given by E¢) is positive. At ¢ than were used ifl5]. . : :
=0 (plot 3) the ray has moved far enough towards posiive To demonstrate the formation of a photonic Wannier-Stark
that the upper edge of the band is equabtoausing the ray Ia_dder, Eq.(13) was solved for a 1D chirped B“'?‘gg grating
to be Bragg reflected. The ray now has a negative grou ith cell sizes re!ated by Eq17) and parameters identical to
velocity, and it moves back towards negatwéplot 4) until Odsfe used for Flg.d3. The Ier%gr]]th of (;he grating was Jémg b
it reachesp= 7 (plot 5). At this point, it Bragg reflects from and it was centered an=x,. he ends were assumed to be
the lower edge of the band, completing the cycle. perfgctly reflecting so that the confined elgenmpdes of the
The Hamiltonian approach gives good physical insightgrat'ng ((:joulddbe cglcula;ed. A Itranfsfer matrix rfnetlroﬁ
into the origin and nature of the photonic Bloch oscillations/3S used to _etermhme the angt;(ilerlgeqléeﬁclzfs <°238 the
in this geometry, but it can only be validated by a compari-£'9enmodes —in  the range rads "so=c.
son with the solution of Maxwell's equations. Since the

(16)

X 10" rad s 1. These are shown on the left-hand side of Fig.

Bragg gratings are assumed to be infinite in extent alpng 4. At thedse frequl]enmes, thef erl]ectrom_agnetlg fields are Conl-I
andz, electromagnetic waves moving in 1D alor@bey a centrated near the center of the grating and are very sma

scalar wave equation near the ends. Therefore the eigenmodes can be identified
with a Wannier-Stark ladder, even though this is strictly de-
2n2 fined as the set of eigenmodes of an infinite lattice.
Vey+ i w=0, (13 In semiconductor superlattices, the Wannier-Stark ladder

originates from the quantization of the Bloch oscillations.
The constant energy spacing of the states is related to the
constant period of the Bloch oscillations by the Correspon-
Rience PrincipleAE=h/rg=eFI. Similarly, in the chirped

whereys is either the electric or magnetic field vector perpen-
dicular to the interfaces. To produce the exponential chir

specmed by Eq(l),fjrlel length of theth cell, Ly, is deter- Bragg grating, the eigenmodes that have negligibly small
mined by S°|V'”9ij exp(— 7(x—Xo))dx=lo for Xj+1,  amplitudes at the ends of the grating form a photonic
wherex; is the known left-hand edge of the cefl,, ; is the ~ Wannier-Stark ladder with a constant angular frequency
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2.4- 8 6 3 0 3 6 xwm FIG. 5. Transmission coefficient(w) showing transmission

peaks separated hyw=~2m7/15.
FIG. 4. Angular frequenciedeft) of eigenmodes of an exponen-
tially chirped Bragg grating with reflective ends. The eigenmodeshecause the tails couple light from incident and transmitted
are separated byyw= 27/ 75 . The intensities of the fields in five of plane waves at either end into and out of the Wannier-Stark
the modes are shown plottth arbitrary unit3 as a function of |adder modes. The transfer matrix method was used to cal-
position x on the right. The solid bars above the intensity plots culate T(w) for the light incident on one of the ends. Five
indicate.the .positio.n and extent of the Bloch oscillations predictedyjagr peaks are visible in Fig. 5, with a near-constant sepa-
by Hamiltonian optics. ration of Aw~2.61x 1013 rad s 1. These peaks can be iden-
tified with resonant transmission through the modes of the
3 _1 . . Wannier-Stark ladder. The modes are only slightly perturbed
x10%rads* which agrees exactly with 2/75=2.590 by the finite length of the grating, which explains the small

3 ~1 _ . .
x 10" rads * (75=0.2426 ps). On the right of Fig. 4 the yeviation of Aw from the predicted value of 2/ 7g=2.590
field intensity profiles of five of the modes are shown as a, 1013 ;aqs L.

function of position. The solid bar above each plot shows the |, conclusion, a simple geometry for producing photonic

position and extentl(z=8.688um) of the corresponding gjoch oscillations and Wannier-Stark ladders has been pro-
Bloch oscillation obtained fr_om Hamiltonian optics. The posed: a slow exponential scaling of unit cell size with po-
agreement between the positions of the modes and the Blodkion, in a general 1D photonic lattice. Simple expressions
oscillations is extremely good, and it demonstrates the validiyr the periods and amplitudes of the Bloch oscillations were
ity of the Hamiltonian optics analysis of this system. The yerived using a Hamiltonian optics analysis. These photonic
modes are slightly longer than the Bloch oscillations as theyoch oscillations are directly analogous to their electronic
have an evanescent tail at each end, which penetrates into tagnierparts since, within the same band, they all have the
region within the band gap, which is forbidden to the geo-game period and amplitude independent of the frequency of

metrical ray path. the light. A photonic Wannier-Stark ladder with constant fre-

The evanescent sections of the eigenmodes should permjtency spacings was also shown to exist in this system. The
the experimental observation of the Wannier-Stark |adde§patial extent and frequency spacing of the modes of the

over a small frequency rang&9]. Figure 5 shows the trans- \wannjer-Stark ladder agreed very closely with those pre-
mission coefficient of a chirped Bragg grating, centered on gicted by quantizing the corresponding Bloch oscillations.
Xo, Which is identical to that used in Fig. 4 except that iS\yjin an appropriately designed grating, the Wannier-Stark

does not have reflective ends and it has been shortened {Qyqes should be experimentally detectable in transmission
11.6 um. This length is slightly larger thaing and was cho-  ,easurements over a narrow range of frequencies.
sen such that the evanescent tails of the Wannier-Stark ladder

modes localized near the center of the grating would just | would like to thank Dr. T. M. Fromhold for useful dis-
reach the ends. Transmission through this grating is possibleussions. This work was funded by EPSRC U.K.

spacing of Aw=2w/7g. In Fig. 4, Aw=2.590
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